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1 Foreword

This report regards in detail the research carried out under AFOSR Grant FA9550-06-1-
0425, “Discontinuous Galerkin for Diffusion,” in the final project period of 9 months (June
1, 2007 - February 29, 2008), and then reviews the entire yield of the project, thus serving
as the Final Report..

The original award period for the project ran from 1 June 2006 through 30 November
2007; a 3-month no-cost extension was requested by the PI for medical reasons, and granted..
Thus, in the second year of the project the grant only covered the 9 months from 1 June
2007 through 29 February 2008.

We bring into mind that, as reported in the first annual report covering the period from 1
June 2006 through 31 May 2007, this project on the recovery-based Discontinuous Galerkin
(RDG) method for diffusion operators has been rich in early successes. Most of the tasks
listed in the 2005 proposal were accomplished in the first year; in addition, an unexpected
fundamental concept, the “recovery basis,” was developed.

2 Accomplishments/new findings in the second year

In the second year the effort addressed the following issues:

1. Making RDG suitable for multidimensional applications. This meant coming up with
the proper polynomial bases for recovery at the interface between arbitrary triangular
or tetrahedral cells. The 2-D rule is described in an AIAA paper by Van Leer, Lo and
Van Raalte [1]; the 3-D rule is a nontrivial extension and still awaits publication.

2. Increasing its efficiency by constructing the recovery basis once as pre-processing step
at the start of an evolutionary or steady-state calculation. At the basis lies the Fun-
damental Theorem of Recovery by Van Raalte and Van Leer [2], which says that the
expansion on two neighboring elements of the discontinuous discrete solution in terms
of the original discontinuous basis functions is identical in coefficients to the expansion
of the recovered smooth solution in terms of the recovered smooth basis functions (the
recovery basis).
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3. The combination of RDG with upwind DG for advection (URDG). This is accomplished
by using the representation of the solution in terms of the original discontinuous basis
when computing inviscid fluxes (with a Riemann solver), while using the representation
in terms of the recovery basis to compute the diffusive fluxes. Numerical tests were
carried out based on the linear advection-diffusion equation and on Burgers’ equation.

4. Writing the general 1-D form of RDG as a penalty method. After rewriting the RDG
formulas for a number of polynomial orders as a classical method with additional
penalty terms with unique coefficient values, the general form of the expansion became
evident. The penalty terms are different for odd and even polynomial-space degrees k;
they contain the product of the jump [u®)] of the k' derivative of the solution at the
interface with the jump of either the test function ¢ (for even k) or its derivative ¢,

(for odd k).

5. Dissemination via conferences and publications. The results of the project were pre-
sented at the 2007 ATAA CFD Conference in Miami and the 2007 International Confer-
ence on Spectral and Higher-Order Methods (ICOSAHOM 08) in Beijing. The Miami
presentation is contained in an ATAA paper [1], the Beijing presentation is to appear
in a special issue of Communications in Computational Physics[2] in 2008.

6. Technology transfer. By leveraging interactions with WPAFB in the framework of
the Michigan/Air Force/Boeing Collaborative Center for Aero Sciences, we were able
to get in contact with a representative of HyperComp (Westlake Village, CA), and
formulate an STTR announcement. This was adopted and issued by the Computa-
tional Mathematcs program of AFOSR. (NB: The ensuing HyperComp/UMich-alliance
STTR proposal was indeed succsessful.)

3 Accomplishments in the entire grant period

Over the total grant period the RDG method evolved from a promising one-dimensional
Discontinuous Galerkin discretization technique for diffusion terms with superior accuracy
and good stability to an efficient multidimensional methodology with a solid theoretical
underpinning, and ready for transfer to Air Force/industrial use. A comprehensive list list
of accomplishments is given below.

(A) Accuracy in one dimension. Consider a uniform spatial mesh of open elements Q; =
17h, (j + 1)h[. Assume the approximate solution w is represented in each element on a
hierarchical polynomial basis of degree k. If we want to compute the diffusive fluxes at the
interface between (), and ()., the recovery principle says we must recover a smooth solution
approximation f on | Qey1; this function lies in a polynomial space of degree 2k + 1. The
discontinuous solution on €2, and ()., is the Ly projection of f.

The degree of f suggests that the spatial order of accuracy of the resulting DG operator
will be 2k + 2; eigenvalue analysis and numerical experiments show that the order is higher.



Specifically, we found that the accuracy of the cell average of the solution is of the order
3k + 2 for k even, and 3k + 1 for k odd.
When solving a 1-D Poisson problem in the piecewise polynomial space with k > 2, the

coefficients of the polynomials of order < k — 2 are obtained exactly, i. e., within round-
off [1].

(B) Accuracy in two dimensions. The property of (k — 2)-exactness is lost in two and
more dimensions. We verified numerically, by solving a 2-D Poisson problem on a uniform
rectangular grid, that the order of accuracy is 2k + 2. It has been communicated to us by
Hung Huynh (NASA Glenn RC) that with the use of a tensor-product basis, rather than
the minimal complete basis of order k, the 2-D method inherits the order of accuracy of the
1-D method. We have not yet confirmed this.

(C) Boundary treatment and accuracy. At the boundary of a 1-D domain there are only
k + 2 data available for recovery, if one just includes the cell on the boundary. The resulting
reduction in accuracy of the boundary fluxes contaminates the accuracy in the interior of the
domain; this has been confirmed in 1-D numerical experiments The loss can be avoided by
allowing the missing k& data to come from the next cell inward, starting with the lowest-degree
information [1].

This approach also works on multidimensional grids, for recovery along the normal to
the domain boundary, as has been confirmed in 2-D numerical experiments on a rectangular
grid [1]. At the end of the grant period we started experimenting with the extension of this
technique to triangular grids.

(D) Two-dimensional recovery. When applying the recovery principle in two dimensions,
it is beneficial to switch to a coordinate system aligned with the interface across which the
diffusive fluxes must be calculated. In the &-direction, normal to the interface, the recovery
problem resembles 1-D recovery. If in the neighboring elements the solution is represented by
a complete 2-D form of degree k, the £-dependence of the recovered smooth solution will be
of the degree 2k + 1. In the n-direction, along the interface, there is no increase in accuracy:
the degree remains k [1].

(E) Stability. A general stability proof for recovery-based spatial DG operators is still
missing, but numerical evaluations of eigenvalues using arbitrarily high-precision arithmetics
have confirmed stability up to & = 6. In two dimensions stability has been shown on
rectangular and right-triangular grids for £ = 1. If, on a rectangular grid, tensor-product
basis functions are chosen (we have not experimented with this), 1-D stability implies 2-D
and 3-D stability.

(F) The recovery basis. For convenience consider again the 1-D case. When applying the
recovery principle to each of the original basis functions on Q. | J Q41 (these are polynomial
on one element and zero on the other one), smooth functions result that may be used as
basis functions in which to express any recovered smooth solution on . JQc41. To make
the recovery polynomial basis unique we require:



1. the discontinuous basis functions ¢; are orthonormal;

2. the recovered basis functions 1; are orthonormal with respect to the discontinuous
basis functions, in the following sense:

1, i=1,..2k+2 j=1,..2k+2, i=j:
/ bty =
0 Ut 0, i=1,..2k=2 [=1,.2K=2, i+]

With the above normalizations, the expansion of f in terms of the recovery basis on 2 [ Qet1
is i¢dentical to the expansion of u in terms of the discontinuous basis [3, 2J:

2k+1 2k+1

u(z) = Z a;pi(r) = f(z) = Z a; (Yi(x), = € QeUQe+1. (1)

i=1 =1

While the discontinuous basis figuring above is hierarchical, with maximum degree k, all
recovered basis functions are polynomials of degree 2k +1. Examples of both bases are found
in Figures 1 and 2.

When switching from one discontinuous basis to another, the transformation between the
bases applies equally to the recovery bases.

(G) Fluzx formulas in one dimension. For the computation of the diffusive fluxes the interface

0 0.5 1 15 2 0 0.5 1 15 2

Figure 1: The discontinuous and recovery  Figure 2: The piecewise constant function
basis for £ = 1 and cells 2y and ; with  and its counterpart in the recovery basis
h=1. for k=0 to 3.

values of f and f, are needed. Since f is expressed in the recovery basis functions, and these
span the polynomial space of degree 2k+1 on Q. | J Qe 1, f is independent of the discontinuous
basis used in the elements. It then follows that the diffusive fluxes are also independent of
the basis used; only the degree k matters. The fluxes can be uniquely expressed in terms of
jumps and averages of the discontinuous solution and its derivatives at the cell interface.
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The fundamental theorem of recovery makes it attractive to compute and store the re-
covery basis for each interface once and for all at the start of a numerical experiment, if
on a fixed grid. To compute a diffusion flux at an interface no recovery process is needed;
one uses the recovery basis in combination with the coefficients of the discontinuous solution
representation on the neighboring elements. This makes RDG computationally efficient. At
the end of the grant period we were in the process of implementing RDG in the above way
on an unstructured triangular grid.

(H) Bilinear forms. The fluxes go directly into bilinear forms. For k& = 1 the form looks
like the symmetric DG method, augmented with Arnold’s interior penalty term and a new
penalty-like term based on [¢,][u,]. For k = 2 another penalty term appears, based on
[¢][uzz], Continuing this process for some higher values of k, the general form of the expan-
sion became evident. The penalty terms are different for odd and even polynomial-space
degrees k; they contain the product of the jump [u(k’)] of the k' derivative of the solution at
the interface with the jump of either the test function ¢ (for even k) or its derivative ¢, (for
odd k).

The asymmetry of the penalty terms starting with & = 2 leads to the appearance of
complex eigenvalues with negative real part in the spatial DG operator, rather than purely
negative-real eigenvalues. This does not appear to affect the stability of the RDG method.

4 Numerical illustrations

The following figures illustrate some of the findings listed in Section 3.

Figure 3, taken from [1], shows the mesh convergence of solution properties for a 1-
D Poisson problem, with & = 2. The error norms of the solution coefficients a3 = A?u
(undivided second derivative) and a; = Au (undivided average gradient) indicate 6'"- and
7"_order accuracy; for a; = u (cell average) we would expect 8-order accuracy, but the
errors are machine-zero for any mesh width.

The property of (k — 2)-exactness, demonstrated above in one dimension, does not carry
over to multiple dimensions. Figure 4 shows properties of the solution to a 2-D Poisson
problem on [0, 1] x [0, 1] with Dirichlet boundary data. The exact solution is

Uz, y) = %{cos(?wx) + cos(2my) — 1}, @)

The numerical solution was taken to be piecewise linear (k = 1 in both directions) on square
meshes, and obtained by marching the associated unsteady problem till convergence. The
boundary was accurately treated according to Section 3, item (C). The left plot shows that
the method is 4"-order accurate, even when measured in the maximum norm. This order is
consistent with 2k + 2.

The solution coefficients and errors shown on the right are for the 16 x 16 mesh. It
is worth mentioning that the numerical solution exhibits all 4 symmetry axes of the exact
solution.
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Figure 3: Mesh convergence for 1-D Poisson problem; k£ = 2. Left: convergence with mesh
size of error norms of solution coefficients A?u and Au. Right: convergence of a.

Next, our most advanced result on stability. On a structured grid of right triangles, which
lends itself to Fourier analysis, we have numerically obtained the DG operator’s eigenvalues
for k = 1; all are non-positive real. Stencil and spectrum are shown in Figure 5.

Finally, results for nonlinear advection-diffusion, viz., Burgers’ equation,

atu + ax (%UP) - ,u@a::vua (3>

are just becoming available. We are using the test cases of Wang [4], in order to facili-
tate comparison with his Spectral Volume method. Figure 6(b) shows the steepening of a
compression wave in time for y = 1 according to the exact solution

B 2sinh(x) ‘
~ cosh(z) +exp(3 —t)’

u(z,t) (4)
we computed this solution with & = 1 on a sequence of grids and plotted the convergence
of the L; error with mesh width for the final time ¢ = 4 (left). The scheme appears to be
4*h_order accurate, which is surprising since upwind DG for advection is know to be only of
order 2k + 1, that is, 3. Apparently the diffusion error dominates for the meshes chosen, as
the diffusion constraint on the time step drives the CFL number to smaller values on finer
meshes.
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Figure 4: Mesh convergence for 2-D Poisson problem; p = 1. Left: convergence with mesh
size of error norms of the mesh average a; = u. Right: computed solution coefficients
a; (average value), ay (average z-derivative) and ag (average y-derivative); exact solution
coefficients; coefficient errors.
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Figure 6: Steepening of a compression wave according to Burgers’ equation. used as a test
case for the DG method with £ = 1. The time integrator was a 5-stage 4*"-order Runge-Kutta

method.

10 Interactions/transitions

(a) Conference presentations:

1. NIA Workshop on Spectral and High-Order Methods, Hampton, VA, November 2006
(speaker: B. van Leer);

2. ICFD 2007, Reading, UK, March 2007 (speaker: M. van Raalte);
3. ICOSAHOM 2007, Beijing, China, June 2007 (speaker: M. Lo);
4. 18th ATAA CFD Conference, Miami, FL, June 2007 (speaker: B. van Leer).

(b) Consulting/Advising: None.

(¢) Transition: Development with HyperComp (Westlake Village, CA) of STTR proposal
titled “High-order modeling of applied multi-physics phenomena;” awarded in May 2008.

11 New discoveries

None patentable.





